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A COMPARISON OF REGULARIZATIONS 
FOR AN ILL-POSED PROBLEM 

KAREN A. AMES, GORDON W. CLARK, JAMES F. EPPERSON, 
AND SETH F. OPPENHEIMER 

ABSTRACT. We consider numerical methods for a "quasi-boundary value" reg- 
ularization of the backward parabolic problem given by 

{ ut+Au=O, O<t<T 
u(T) = f, 

where A is positive self-adjoint and unbounded. The regularization, due to 
Clark and Oppenheimer, perturbs the final value u(T) by adding ceu(O), where 
a is a small parameter. We show how this leads very naturally to a reformu- 
lation of the problem as a second-kind Fredholm integral equation, which can 
be very easily approximated using methods previously developed by Ames and 
Epperson. Error estimates and examples are provided. We also compare the 
regularization used here with that from Ames and Epperson. 

1. INTRODUCTION 

Let A be a self-adjoint operator on a Hilbert space H such that -A generates a 
compact contraction semi-group on H, and 0 is in the resolvent set of -A; perhaps 
the canonical example is A = -A, the Laplace operator. We consider numerical 
solutions to the problem: find u: [0, T] - H such that 

(FVP) {f u/(t)+Au(t)=O, O<t<T 

(FVP) ~ ~ tu(T) = f 
for some prescribed final value f in H. Such problems are not well posed; that is, 
even if a unique solution exists on [0, T], it need not depend continuously on the 
final value f. 

In the. context of analytic approximation for this problem, many approaches 
have been tried. Such authors as Lattes and Lions [8], Miller [10], and Showalter 
[13] have approximated (FVP) by perturbing the operator A. In their work, Clark 
and Oppenheimer [4] followed what Showalter [14] did in a more general context, 
and approximated (FVP) by perturbing the final value condition. This yields the 
quasi-boundary value problem 

(QBVP) { 2au,(0) + uc(T) f, 
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where a is a small positive number. 
As is shown in [4], this approximation has many nice properties, some of which 

we will need here. The operator A has an orthonormal set of eigenfunctions qi, 
with eigenvalues Ai > 0, such that the set {qi } forms an eigenbasis for H. We 
will always take the f appearing in (FVP) to have an expansion in this eigenbasis 
given by f = biqi. It is the use of this eigenstructure that gives the precise 
estimates in [4] and distinguishes the approach there from that found in [14]. 

Our goal in this paper is to implement the abstract approximation scheme of 
Clark and Oppenheimer numerically. Of course, before we can ask questions about 
the implementation and accuracy of an approximation, we must first answer the 
question: Is there anything to approximate? The answer is yes if and only if 
Z0 b? e2TAi converges. The two theorems from [4] which are most important in 

the context of this paper bear directly on this question and are given below. 

Theorem 1. For all f in H, (FVP) has a solution u if and only if the-sequence 
uO(0) converges in H. Furthermore, we then have that us>(t) converges to u(t) as 
a tends to zero, uniformly in t. 

Theorem 2. If f E? biqi is in H and there exists a positive e so that 

00 

Se T = Z b2e(2+c)AiT 

i=O 

converges, then Iluc(t) - u(t) converges to zero with order a67-2, uniformly in t. 

Theorem 1 guarantees us that, it is worth while to look for a numerical imple- 
mentation, and Theorem 2 gives us an upper bound on the convergence rate we 
can expect. Theorem 2 will be re-stated more explicitly and slightly improved in 
the next section. 

It is interesting to note that even when (FVP) fails to have a solution, the 
regularized solution at t = T still converges to f. Formally, we have: 

Theorem 3. For all f E H, juc(T) - f 11 converges to zero as a -? 0. 

This is Theorem 3 of [4]. Note that there is no convergence rate. 
We close this section with some notation and assumptions that will apply for 

the rest of the paper. 
We assume that -A is a uniformly elliptic differential operator on a bounded, 

open domain Q, with homogeneous Dirichlet data imposed on &3Q, and we take our 
Hilbert space H to be L2(Q). Associated with the operator A is the bilinear form 
a: Ho (Q) x Ho (Q) -* R such that 

-Av = g 

if and only 

a(v, w) = (g, w) Vw E H'(Q). 

We assume that a solution to (FVP) actually exists and satisfies the estimate 

1Ju(t)JI <Km 

for all t E [0, T]. Here, and in what follows, j * will denote the L2(Q) norm, and 
11 Ilr the Hr(Q) norm. 
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2. REFORMULATION OF THE PROBLEM AND REGULARIZATION ESTIMATES 

In this section we will show that (QBVP) can be written as a Fredholm integral 
equation of the second kind. This will permit the application of approximation 
schemes found in [1]. 

Let S(t) be the compact contraction semi-group generated by -A. Then we have 
that 

u0, (t) =Stuox (O) 

or, solving for ua(O) in terms of f, 

ua(t) = S(t)(caI + S(T))-1f. 

Hence, 

auc, (t) + S(T)uc (t) = S(t) f, 

which, for fixed t, is a Fredholm integral equation of the second kind. To see this 
more clearly, let K be the kernel of the operator Ot + A so that we have 

v(t) = S(t)v(O) 

if and only if 

v(x, t) = jK(x, t, ()v((, O)d. 

Therefore, we have 

auo(XI t) + j K(x, T, )ua(( t)d< = F(x, t), 

where 

F(x, t) = j K(x, t, ()f( )d. 

We adopt the point of view that we are interested in approximating u only at the 
specific time t = t*, i.e., we are only interested in computing u (t*). For notational 
simplicity denote 0 = u(t*) and /c, = uc,(t*). We therefore have that /C, satisfies 
the second kind Fredholm equation 

ac,a(x) + j K(x, T, ()qc(()df = F(x, t*). 

For notational simplicity we write this in operator form as 

(1) 0a~,?/a/+ 10a 1C2f, 

where 

ICV= j K( T, )v( )d< 

and 

IC2V = jK- t*, )v()d&. 

Since / = u(t*) the regularization estimate from Theorem 2 becomes 

<1-a| ca le 
2 

where is the L2(Q) norm and we assume that E?% b? e(2+6)AiT converges. We 
can improve this, slightly, as follows: 
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Theorem 4. If f = 0 biqi is in H - L2(Q) and there exists 6 E (0, 1) so that 

? b-o b?e2>i(l+,)T converges, then, for t > 0, 

(2) I1uC'(t) - u(t) ?11 < aM(). 

Here 

M() tb 2e2(1+c)/\iT) 

i=o 

Moreover, if 6 < t/T, then 

(3) ||u(t) - u(t)|| < ||u(O)|. 

Proof. Since Z' 2 b? e2TAi converges, we can write 

u(t) = S(t)S(T)1lf 

and 

u (t) = S(t) (aI + S(T))1f, 

so that 

u(t)-uc (t) = S(t) (S(T)-1 - (aI + S(T))-1) f 
00 

= aZ e i(Tt) (a + eAi )j biqi. 
i=1 

Therefore, for any 6 E (0, 1) 
00 

11U(t) ua(t)12 = a2 S e2Ai(T-t)b2 (Ca + e? i 
2 

i=l1 
00 - 

= a2 E e2Ai(T-t)b2 [(C + e-iT)6 (C + e-iT) ] 

i=l1 
00 

? a 2 e2Ai (T-t) b2 (e2AiT)C (C1e c2 

i=l1 
00 

? a2c 3 b 2e2Ai((l+c)T-t) 

i=l1 

from which both conclusions follow immediately. fl 

Remark. If 6 > 1, then, since A1 < Ai, 

[(a + eA \iT) += a ? eAiT) (a + e-XAiT (a + e? 

< e2c'iT (a + e-?\T 2c-2 

from which we still get an error bound of the form 

(4) JJu0 (t) - u(t) 11? c(C)M(6) 

where c(a) = a(a + e-AlT)E-1, which goes to 0 quite rapidly as a does. 
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In particular, taking t = t, (and assuming for simplicity that e E (0, 1)) we have 

q$? -q$oa| < ?aclu(0)|| 
so long as e < t*/T. Alternatively, if the initial data f is sufficiently smooth, in the 

sense that M(1) = (Z 0 b? e4AiT ) 1/2 converges, then 

110' - qO$J < o?M(1). 
Finally, we note that taking t = 0 and e -* 0 yields 

00 

||u(O) - uO(0)J 2 < EZb2e2AiT = 11u(0) 112. 

i=1 

Theorem 4 is analogous to Theorem 2.6 of [1], which was derived using the classic 
log-convexity argument associated with ill-posed problems. It says, roughly, that to 
the extent that the solution can be continued further backwards in time, then the 
regularization will be accurate. Similar results are in Groetsch [6]. In fact, we can 
modify the kind of argument used in [1] to get analogous results for our problem 
here. 

Theorem 5. If f E L2(Q) and u(0)II < m, then, for any t E (O,T) 

U0c (t) - u(t) < ? mnt/Ta 

Proof. We use the classic log-convexity argument as given in [11]. If we subtract 
(FVP) and (QBVP) we get that the error e(t) = u(t) - u,(t) satisfies 

e'(t) + Ae(t) = = 

e(T) = auc (O). 

Now define the functional 

g(t) = j e2(t)dx 

for which we quickly get 

g'(t) = 2a(e, e) 
(here a(.,-) is the bilinear form associated with -A) and 

g"(t) = 4 je2dx = 4 j(Ae)2dx. 

Thus, Schwarz's inequality implies that 
99_ (g)2 > / 

so that g(t) is log-convex, from which the inequality 

g(t) :< [g(0)] /tT [g(T)] tIT 

follows. But g(T) = a2 1uo (0) 12 and g(t) =u(t) - Uo(t)112 so we have 

11u(t) - u0(t)jj < 11U(0) - Uot(0)j 1-t/T (ajjU (0)jj)t/T 

or 

I|u(t) - UOc(t)| < at/T||u ,(0)|jt/TjjU(0) _ Uc (0)j1;- t/T 

But a direct calculation shows that 
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uniformly in t, which, together with (3), implies 

||u(t) - Ua(t) I <at/T u(o)I|| 

and we are done. 

If we take t = t,* and define 0 = t*/T, then Theorem 5 implies that 

$-q0$1< ma0. 

If our data is perturbed by some noise term, then the regularization error can 
be severely affected. Assume that the data is given by f6 f, with If -fall < 6 
assumed. Let 06 be the regularized solution corresponding to data f6. Then we 
have that the difference w = 0- q6 satisfies 

aW + IKCW = C2(f - f6) 

Using the eigenexpansion we can explicitly solve this, getting 
oo e-Ait* 

% 1 

Therefore, 

q$oo,-q$6 11< 6max 
~ 

a ~ [O,1] a + 

where, as before, 0 = t*/T < 1. Simple calculus then implies that 

I 
0 

< a-(1-0) 

from which we get 

(5) iiocl - q$6 1 < 6a-(1-0) 

which should be contrasted with the corresponding result in Ames and Epperson 
[1]: 

(6) 1100, _ 06 11 <16-/ 

This implies that the method studied here should be less sensitive to noise in the 
data for 0 > 1 i.e. for "short-term" problems. 2' 

Our task now is to construct numerical methods to approximate qa. Before 
embarking on that effort, however, we digress slightly to make a comparison between 
the regularization used here and that used in [1]. 

3. COMPARISON WITH THE REGULARIZATION OF [1] 

It is natural for us to compare the regularization discussed here with that used 
by Ames and Epperson in [1]. Since they worked with the initial-value problem 
for the backward form of the operator, the transformation t -- T - t needs to be 
performed before a fair comparison can be made. Once that is done we have the 
following. 

The regularization used here can be written in terms of the eigenfunction basis 
as 

(7) = ( a2;i )(f,qi)qi 
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and is accurate in the sense that (Theorem 5) 

(8) 11 ?-q0$ll < ?mao 

for 0 = t*/T. 
The regularization used in [1] can be written as 

E ( e-Ai(T-t*) 

(9) = Y~~~E a e-2Aj(Tt*)) (fqj)qj 

and is accurate in the sense that 

(10) 11X- 011 CaT, 

where here we have T = t*/(2T - t*) = 0/(2 - 0). 
Note that some manipulation with the expansion coefficients in (9) lets us write 

it as 

Zv = Ea(eAi(T-2t ) + e-AiT) (f,qi) qi. 

In other words, both methods can be considered as coming from the family of 
regularizations defined by 

= 
0 - (e it*)(,q)~ 

E a(qjt + e-Ai T) 

where the "regularization weights" Tj are given by 

rj = 1 

for (7), and 

-i = eAi(T-2t*) - eiT(l-20) 

for (9). 
Now, denote the norm of the regularization error associated with (7) as 6, and 

the norm of regularization error associated with (9) as 6, so that we have (recall 
that bi = (f,qj)) 

62 =110 0 2 Zb2e2Ai(Tt* a- 

using q$c from (7), and 
oo 2 

6 -c, 112 = Eb 2e2Ai(Tt*) [ +e-iTl' 

using q$8 from (9). Then we have the following result. 

Theorem 6. If 0 < 2, then 6 < &; if 0 > 1, then 6 > &. Thus, in the absence of 
noise in the data, the regularization (7) is morie accurate for long-term problems, 
i.e., for < 10 

Proof. This is done by a simple calculation working with the squares of the errors. 
We have that the difference in regularization errors is given by 

D =62 _2 = Zb2 e2Ai(T-t*) [( a 
- (________ 

i=1 ?~a e-AiTJ aq ? e-AiT) 
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But the bracketed term simplifies as follows: 

( aN2 ( K~Ni 2 2 -2AiT(I - -ii) ? 2a3iieAiT(1-i 

+ e-ziT a Kaj + e-AiT a e (a + e-AiT)2(aqi + e-AiT)2 

hence, D<O 0 (or, 62 <.6 ) iff* >1 iff 0< 2, and we are done. 

Remark. Note that we now have the interesting result that for any value of 0, the 
more accurate regularization will be more sensitive to noise in the data. This is in 
fact borne out by the examples that we present later in the paper. 

Finally, we note that (9) implies that we can write the regularization from [1] as 
the solution of the operator equation 

aIC30ba + IC1q$, = IC2f, 

where 
00 

IC3+ = (+b, qi) e- i(T-2t* ) qi 

i=l 
where we are implicitly assuming the sum converges. Thus both regularizations 
can be written as solutions of the operator equation 

aqcoa + ICiqc, = IC2f, 

where ? = I, the identity for our regularization, and L: = IC3 for that used in [1]. 
However, a better way to write the regularization from [1] is in the form 

aq$c + ?C4* IC4 4c = IC4 f, 

where 
00 

IC4+ = (V), qi)e--Ai (T-t* ) qi 

This will be needed in ?6, where we do a comparison of error estimates. 

4. NUMERICAL APPROXIMATION VIA EIGENVALUES 

We now turn our attention to the problem of numerically approximating the 
solution to (QBVP), using an (approximate) eigenfunction expansion. Since S(t) = 
e tA we can work directly with the eigenpairs of the operator A, instead of having 
to compute the kernel function K itself. Iterative techniques, which are slightly 
more efficient, are discussed in the next section. Much of what we do here follows 
?3.1 of [1]. 

We can write out the regularized solution in terms of the eigenbasis as 

+ = E ( + e AiT) (f , qi) qi. 

Suppose now that we have a finite-dimensional approximate eigenbasis, i.e., a 
set of pairs (At, q4i )i=N, where 

Ai eh- Ai, qih qiv I < i < N. 

We can then define the approximate regularized solution as 

(11) q$c+,h = E ( ;>ii ) (f, qi )qih 
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If we define the approximate eigenpairs via classical finite element methods, then 
we have 

(12) a(qi,Wh) =Ai (qi,Wh) VWh E So(Q) c o(Q) 

where Sh(q) is a finite element approximating subspace [2] and a(., *) is the bilinear 
form associated with the operator -A. We can thus approximate the solution of 
(QBVP) by solving the matrix eigenvalue problem derived from (12) and then 
computing the approximate solution via (11). 

As a matter of fact, any set of approximate eigenpairs can be used in (11); 
however, as we shall see in ?6, the accuracy of the approximation is closely tied to 
the approximation properties of the subspace Soh (Q). 

From (11) and (1) we can easily show that 

N N 

aOh.,h ? E e T (qce, qi )q= e q )q 
i=l1= 

from which we get the definitions of the approximate operators 

N 

IC,hV 
e T h) 

i=l1 

N 

IC2,hV = Ee- i (VI qi )qih 
i=l1 

We note in passing that if vh = ICj,hV,j 1, 2, then vh is a semi-discrete finite- 
element solution to a forward self-adjoint parabolic problem; hence the results of 
[3] apply. They will be needed in ?6, where we derive error estimates. We also 
define the approximate operator needed for the regularization from [1] 

N 
t E~~' _h (T-t* ( h) h 

1C4,hV e=(, ~) 
i=l1 

The one drawback of this method is that the discrete eigenvalue problem can be 
quite large, especially when the problem is posed in R2 or R3. For this reason we 
are led to consider iterative methods, as in the next section. However, the presence 
of the decaying exponentials in the approximate expansion coefficients implies that 
we can sometimes truncate the expansion. If we let e be a truncation tolerance, 
then we would ignore all terms such that 

where = ei T. The presence of the fraction 0 makes explicit computation of a 
sharp bound for Ai difficult. However, if 1 < 0 < 1, then 

| (f (f, qh) |< | f(f qi) 
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from which we can get the (sufficient) condition that 

T ( 
-lg 

((fqih)J - Vl(fqh) 12 
4a62) 

2 (1[hI 

T \2a6L 
h a6 

=~~~ T ol2[(f,qi )I + I 
/(f qh) 12_ O2]- 

Alternatively, if 0 < 0 < , then 

| -(f, qh) < |1a 140(f qh) | 

from which we get the (again, sufficient) condition that 

1 (f,q~) 
Ai > - log( ' 

t* ae 

The practical implementation of this truncation scheme is discussed in ?7. 

5. NUMERICAL APPROXIMATION VIA CONJUGATE GRADIENT ITERATION 

Perhaps the best iteration technique to use for solving (1) is the standard con- 
jugate gradient method [5], [7], [12], which converges very quickly for this problem, 
even in the absence of pre-conditioning. This is based on the work of Winther [15], 
who studied CG as applied to operators of the form I+A, where A is compact. It is 
a very short step from this case to ours, in which the coefficient operator is aI+ ?Ci, 
with IC, compact. Since many of the details are in [1], we will only summarize here. 

Winther's main result is that the error in a CG iteration for problems governed 
by I + A, A compact, is governed by 

(13) I)- n i1 < (cn)n11kb-kol, 

where Cn 0 as n oo , thus producing superlinear convergence. The precise 
formula for Cn is [1] 

[n AkT /n 

= [( ? leAT) ItiI ( aceAkTlJ 

which clearly goes to 0 as n goes to oo. 
To apply CG to our problem requires only that we construct some approximation 

to the compact operator IC1. As in [1], we note that this does not require a priori 
knowledge of the kernel of the PDE, since we really do not need to know the 
operator so much as the operation, i.e., we need to know how to approximate 1C1w 
for a given w. But this is nothing more than the solution to the forward parabolic 
problem corresponding to (FVP), so that any finite difference or finite element or 
spectral method will suffice. The error estimate (13) becomes 

||0a,h - O hll < (Cn) 110,h - hlk 

where we have now written the iteration index as a superscript. The convergence 
rate is now given by 

=[(1 ? a1eA~T itn ( h 2 ) 1 /n 
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where Ah is the kth eigenvalue of the approximate form of IC1. Again, this decays 
rather rapidly to 0. 

6. ERROR ESTIMATES 

Having constructed the numerical approximations, we now turn our attention to 
estimating the error in each method. 

To facilitate discussion of the error estimates, we first give and discuss a set of 
assumptions to be made (and, in some cases, eventually proved). 
(Al) Subspace Approximation: Here we assume that the approximate solution is 
an element of a subspace Sh,d(Q) C L2(Q) with the following property: for every 
function 4' E HS(Q), there is a function 'b_ E Sh,d(Q) such that 

(14) b- 'flll < Ch'|l|1|lr, Ht = min(d + 1, r), 0 < r < s. 

This is a standard result for finite-element approximations [2]. In that context, the 
parameter d is the degree of polynomial approximation used in constructing the 
subspace. In the classic case of piecewise linear approximations, we have d = 1 so 
(14) reduces to 

11K - flll < Ch2fl'fll2. 
We also note that one choice of f I (there are many) is the L2-orthogonal projection 
Ph4' defined by: 

(4- Ph,7i Vh) = 0, VVh Ee Shd(Q). 

(A2) Operator Approximation: Here we assume that the approximate operators 
K1,h and 1C2,h are accurate in the sense that there exist positive constants Ci, i = 1, 2 
such that 

(/Ci-Ki,h)vll < Cih"flvflq, v = min(d + 1, q), 

for some q > 0. We note in passing that since the approximate operators are essen- 
tially representations of standard approximations to forward parabolic problems, 
estimates such as this are well known in the literature. See, for example, Theorems 
2.1, 3.2, and 3.3 of [3]. 
(A3) Smoothness of initial data: We say that the data function f is pre-diffused by 
-y if there- exists a constant Ma such that 

00 

Eb2e2-y,i < M2 

i=l 

where we recall that the bi are the coefficients of f in the eigenfunction basis. This 
assumption is tantamount to assuming that the initial data is the result of evolving 
the forward operator over a time interval of length -y, and was first used, in a slighter 
different form, by Miranker [9]. Note that the assumption that flu(0)l1 < m implies 
that f is pre-diffused by T. 

Theorem 7. Let 0,,h be the approximate solution computed according to the eigen- 
value technique described in ?W, using the regularization (7). If (Al), (A2), and 
(A3) hold, with -y > 2T - t*, and if 0q E Hr (Q), then there exists a constant C > 0 
such that 

0- bce,hfl < C (a0M? + h"110ollr + mT,hhv (flfflq + 110alfq)), 
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where 

0 = (y + t* -T)/T > 1, 

and 

m =leh 112 
e h 

|leh 112 + | | I/2h eh 11|2 

where 

eh = Pha - a,h- 

Proof. We first note that the triangle inequality and Theorem 4 imply that 

110-0a,hl <? 110-0q11$0 + K110-0a,h 

< aofMy + 11fob - Oa,hf1 

for -y as specified, so it only remains to bound the approximation error -. Oa,h fl 
We have 

(IC, + cxI> 0 = C2 f, 

(ICI,h + ?I)Oa,h = 1C2,hf 

so that 

(ICI,h + aI)(vh- 0,,h) = (KC2-1C2,h)f 

(15) + ax(Vh - 0,) 

+ (ICI,hVh-IC1qA)- 

Take vh = Phq$, denote eh = Ph,- 0,,h, then multiply (15) by eh and take inner 
products to get 

((K1,h + axI)eh, eh) = ((C2 - C2,h)f, eh) 

+ a(Pho 5-Oa, eh) 

+ (1C1,h(Ph0o,-0o ), eh) 

+ ((IClVh -IC1,h0q), eh). 

Taking each term on the right in turn, we get 

j((KC2-AC2,h)f,eh)| < flK22-1C2,h | |fl||feh11 
< C2h'flff |lqflehl 

by (A2); 

a(Ph - Oa, eh) = 0 

by definition of Phqo5, since eh E Sh,d(Q); 

(ICI,h(Phqo, - Oa), eh) = 0 

since ICI,h is self-adjoint; and, finally, 

j((IClvh-1Cl,h0o), eh)| <? K1C,h- C1lf|| j0oj|ehfl 
< Clh'flj0ojlqflehfl. 

At this point, then, we have 

(16) ((ICl,h + axI)eh, eh) < C3h"'(1lfflq + 11 0, q)flehf.- 
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However, the left side can be bounded below, very weakly, to get: 

((K1I,h + al)eh, eh) = (Cl,heh, eh) + a(eh, eh) > ( 
1 eh f2 Ce le-h12 

fle-h eh12 

So we have 

elehl <? Cma,hh' (flfllq + flfflq) 

Thus 

110a - 0,hf< 110aq - Phqa$l + IlPhqo, - qa,hfl 

< CmT,h" (hl(|olq + |ffl|q) + Ch"flqcl?flr, 

which, combined with the regularization estimate (2), completes the proof. Lii 

Remark. If the initial data is not pre-diffused then Theorem 5 can be used to bound 
the regularization error, making the final estimate 

110 - qa,hfI < C (Tna 0 + h'|f0lq|fr + mT,hh- (flfflq + 110aclq)) 

for 0 = t*/T. 

The same basic argument can be applied to obtain an error estimate for approx- 
imating the regularization from [1]. The result is 

(17) k - ,hfl < C (cT + h'loolJr + rco,hh- (flfWlq + 110aclq)) 

for 

T = 0/(2 -0), 0 = t*/T 

and 

Tna,h 
I~~~lehf112 

all= leh 112 + |lIC4,heh l2 

Here we have used the regularization error estimate (10) and we have assumed an 
approximation result for K4,h analogous to (A2). The estimate (17) is in slightly 
different form than given in [1] because the proof there was based on log-convexity 
arguments-rather than the eigenexpansion techniques used here. 

The principal difference between the estimates for the two regularizations is in 
the m,,h and Ma,h coefficients. Conservative upper bounds for these are 

(18) ~~~~~~~~~~~~~1 (18) ma,h <h T 

(19) rn,h < a + e-24h (T-t*)' 

both of which can be bounded above by a-1* 
To get a better sense of the convergence rate implied by these results, let us 

assume we are using linear finite elements, so that we have d = 1, r = q = ,u = v = 2, 
and also assume that 0 = 1. The best we can do with m,,h or ma,h is ma,h < a-I, 
which our computational experience tells us is very conservative. Then the estimate 
is 

1l0 - Ia,hIl < C (eYMy + h21100l12 + h2Ce71 (flffl2 + 110o,112)) 
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To "balance" the error contribution from the separate terms we take ai = hS and 
find s so that hS = h2-s. This yields s = 1 and the final estimate is 

10- ba,hfl < Ch (Ma + Ilf 12 + 110ak12) - 

The examples in ?7 will show that this estimate is somewhat conservative in that 
the actual error can, on occasion, decrease more rapidly than this would indicate. 
However, this estimate does indicate how increased smoothness of the initial data 

as governed by the size of -y can influence the error estimate. For a general 
regularization error of the form ae, we have that the final estimate is O(h2 +o)). 

7. EXAMPLE COMPUTATIONS 

Here we simply present the results of some sample calculations which demon- 
strate how the method works in practice. We are particularly interested in compar- 
ing how the method discussed here compares to the method from [1]. All computa- 
tions were done in Fortran 77 on a variety of Sun workstations; LAPACK routines 
DSTEVX and DSBEVX were used to solve the eigenproblems. 

We look at four different examples. Example 1 considers the very simple back- 
ward evolution of a single Fourier mode when perturbed by random noise of differ- 
ent amplitudes. Example 2 looks at a similar problem consisting of several Fourier 
modes. Example 3 looks at the backward evolution of an initial profile generated 
by the forward evolution of a non-smooth profile. Finally, in Example 4 we look at 
the cost of computation for a two-dimensional example. 

Example 1. Consider the very simple backward heat equation problem given by 

ut = uxx,O<x< 1,t<T, 

u(O, t) = O, 

u(1, t) = O, 

u(x,T) = e-1 sin7rx, 

which has the exact solution 

u(x,t) = e,2(T-t)-1 sin 7rx. 

Taking T = 5/32 we solved this problem and measured the error at t* = 1/32 (0 = 

1/5) and t* = 1/8 (0 = 4/5), then compared our results with the exact solution 
and the method of [1] for accuracy. In all cases we used linear finite element 
approximations, the regularization a = h2 and the sequence of grids defined by 
h = 2-i, 2 < j < 10, A\t = h/8. The approximation was directly constructed from 
the eigenexpansion, rather than using the conjugate gradient iteration, and the 
eigenvalue computation was truncated using the tolerance of e = h3. To measure 
the sensitivity of the computations to noise, we also added random perturbations 
to the final data, using a maximum amplitude of 6 10-k, k = 2,4,6. Results 
using the method in this paper are labeled ACEO; those based on the method of 
[1] are labeled AE. 

Note that Tables 1-6 do indeed bear out the comparison results obtained in the 
paper indeed, that is the main reason for including this example. For 0 < 2, the 
ACEO results are superior to the AE results in the absence of any perturbations. 
However, when the noise is added to the data, the AE results are better. 
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TABLE 1. Error results for Example 1; a = h2, 0 = 1/5, no perturbation. 

h-7 Error (ACEO) Ratio Error (AE) Ratio 
4 0.232449D+00 - 0.3847712D+00 - 

8 0.7273950D-01 3.19 0.1471744D+00 2.61 
16 0.1940672D-01 3.75 0.4241154D-01 3.47 
32 0.4934578D-02 3.94 0.1102365D-01 3.85 
64 0.1238937D-02 3.98 0.2783526D-02 3.96 
128 0.3100667D-03 4.00 0.6976291D-03 3.99 
256 0.7753745D-04 4.00 0.1745168D-03 4.00 
512 0.1938575D-04 3.99 0.4363600D-04 4.00 
1024 0.4850102D-05 4.00 0.1090936D-04 4.00 
2048 0.6331341D+00 0.00 0.6331341D+00 0.00 

TABLE 2. Error results for Example 1, using (ACEO); ae = h2, 0 

1/5, perturbation = 10-k, k = 2,4,6. 

h-1 6 = 10-2 6 = i0-4 6 = 10-6 

Error Ratio Error Ratio Error Ratio 
4 0.2247218D+00 - 0.2323675D+00 - 0.2324442D+00 - 

8 0.6614985D-01 3.40 0.7264156D-01 3.20 0.727385ID-01 3.19 
16 0.4583929D-01 1.44 0.193795ID-01 3.75 0.1940640D-01 3.75 
32 0.3360654D-01 1.36 0.4970168D-02 -3.90 0.4934827D-02 3.95 
64 0.2201172D-01 1.53 0.1254663D-02 3.96 0.1238902D-02 3.98 
128 0.8180646D-01 0.27 0.8674530D-03 1.45 0.3099647D-03 4.00 
256 0.7458506D+00 0.11 0.7458786D-02 '0.12 0.1075010D-03 2.87 
512 0.3551384D+01 0.21 0.3551377D-01 0.21 0.3555905D-03 0.30 
1024 0.2328992D+01 1.53 0.2329009D-01 1.53 0.2331157D-03 1.52 
2048 0.6331435D+00 3.68 0.6331342D+00 0.04 0.6331341D+00 0.00 

TABLE 3. Error results for Example 1, using (AE); a h2, 0 

1/5, perturbation = 10-k, k = 2,4,6. 

h- 1 6 = 10-2 6 = 10-4 6=10-6 

Error Ratio Error Ratio Error Ratio 
4 0.3788117D+00 - 0.3847116D+00 - 0.3847706D+00 - 

8 0.1382453D+00 2.74 0.1470851D+00 2.62 0.1471735D+00 2.61 
16 0.3933689D-01 3.51 0.4238043D-01 3.47 0.4241123D-01 3.47 
32 0.1367326D-01 2.88 0.1104827D-01 3.84 0.1102389D-01 3.85 
64 0.4547718D-02 3.01 0.2780097D-02 3.97 0.2783489D-02 3.96 
128 0.1609398D-01 0.28 0.6953793D-03 4.00 0.697421ID-03 3.99 
256 0.3160792D-01 0.51 0.3562032D-03 1.95 0.1744447D-03 4.00 
512 0.5478467D-01 0.58 0.5489150D-03 0.65 0.4389440D-04 3.97 
1024 0.3615845D-01 1.52 0.3616016D-03 1.52 0.1144602D-04 3.83 
2048 0.6331434D+00 0.06 0.6331342D+00 0.00 0.6331341D+00 0.00 
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TABLE 4. Error results for Example 1; ai = h2, 0 = 4/5, no perturbation. 

7h- Error (ACEO) Ratio Error (AE) Ratio 
4 0.7965111D-01 - 0.4065114D-01 - 

8 0.2496477D-01 3.18 0.1124311D-01 3.62 
16 0.6663260D-02 3.75 0.2887592D-02 3.89 
32 0.1694452D-02 3.94 0.7268653D-03 3.97 
64 0.4254414D-03 3.98 0.1820295D-03 3.99 
128 0.1064752D-03 4.00 0.4552698D-04 4.00 
256 0.2662599D-04 3.98 0.1138297D-04 4.00 
512 0.6656943D-05 3.99 0.2845813D-05 4.00 
1024 0.1664256D-05 4.00 0.711451ID-06 4.00 
2048 0.9397974D-01 0.00 0.9397974D-01 0.00 

TABLE 5. Error results for Example 1, using (ACEO); ac = h2, 0 

4/5, perturbation = 10-k, k = 2,4,6. 

h-1 6 = 10-2 6 10-4 6 =10-6 

Error Ratio Error Ratio Error Ratio 
4 0.7643459D-01 - 0.7961894D-01 - 0.7965079D-01 - 

8 0.2103312D-01 3.63 0.2492537D-01 3.19 0.2496438D-01 3.19 
16 0.5501156D-02 3.82 0.6650565D-02 3.75 0.6663133D-02 3.75 
32 0.2780416D-02 1.98 0.1704295D-02 3.90 0.1694551D-02 3.93 
64 0.5603345D-03 4.96 0.4240012D-03 4.02 0.4254267D-03 3.98 
128 0.1109020D-02 0.51 0.9850982D-04 4.30 0.1063920D-03 4.00 
256 0.1083626D-02 1.02 0.2481639D-04 3.97 0.2658627D-04 4.00 
512 0.1715889D-02 0.63 0.1715728D-04 1.45 0.6625423D-05 4.01 
1024 0.1032948D-02 1.66 0.1014695D-04 1.69 0.1647635D-05 4.02 
2048 0.9398951D-01 0.01 0.9397983D-01 0.00 0.9397974D-01 0.00 

TABLE 6. Error results for Example 1, using (AE); a = h2, 0 

4/5, perturbation = 10-k, k = 2,4, 6. 

h-1 6 = 68 10 1-4 6 = 10-6 . 
Error Ratio Error Ratio Error Ratio 

4 0.3699124D-01 - 0.4061440D-01 - 0.4065077D-01 - 

8 0.7857295D-02 4.71 0.1120212D-01 3.63 0.1124270D-01 3.62 
16 0.5241586D-02 1.50 0.2875184D-02 3.90 0.2887464D-02 3.89 
32 0.3235569D-02 1.62 0.7372301D-03 3.90 0.7269639D-03 3.97 
64 0.7371852D-03 4.39 0.1807105D-03 4.08 0.1820148D-03 3.99 
128 0.1216247D-02 0.61 0.3834107D-04 4.71 0.4544383D-04 4.01 
256 0.5642036D-01 0.02 0.5642391D-03 0.07 0.1266888D-04 3.59 
512 0.1781688D-01 3.17 0.1781387D-03 3.17 0.3329142D-05 3.81 
1024 0.2526248D-01 0.71 0.2526208D-03 0.71 0.2619674D-05 1.27 
2048 0.9398917D-01 0.27 0.9397983D-01 0.00 0.9397974D-01 0.00 
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Example 2. Here we consider the same PDE, but with a slightly more involved 
data function. Define 

< ( 9 _T2 i 47 2 --T2i f (x) =e T7 7 sin irx A e-47 sin 2irx A -2--7 sin 3rxx 

from which we get that the exact solution is 

u(x t) = e-T 2+(T-t)7r2 sin irx 

+ e-4T72+4(T-t)7r2 sin 2rx + e-2-9r72+9(T-t7) sin 3-rx. 

Taking r = T - t*. produces the exact solution 

b(x) = u(x, t*) = sin irx + sin 2irx + e-2 sin 3-rx. 

Figure 1 shows the data profile and solution profiles for T = 1/8, t* = 1/32 (0 = 
1/4) and t* = 3/32 (0 = 3/4). Tables 7 and 8 show the same information as 
in Example 1 for the numerical approximations. Two things to note are that the 
comparison results of ?3 are again confirmed, but the errors are substantially higher 
than in Example 1. 

TABLE 7. Error results for Example 2; a = h2, 0 = 1/4, no perturbation. 

h-' Error (ACEO) Ratio Error (AE) Ratio 
4 0.651311E+00 - 0.731592E+00 - 

8 0.500437E+00 1.3010 0.685975E+00 1.0660 
16 0.277570E+00 1.8030 0.616086E+00 1.1130 
32 0.130830E+00 2.1220 0.444974E+00 1.3850 
64 0.935625E-01 1.3980 0.224220E+00 1.9850 
128 0.770219E-01 1.2150 0.115449E+00 1.9420 
256 0.482003E-01 1.5980 0.969024E-01 1.1910 
512 0.193557E-01 2.4900 0.943557E-01 1.0270 
1024 0.570397E-02 3.3930 0.901759E-01 1.0460 
2048 0.149270E-02 3.8210 0.768532E-01 1.1730 

TABLE 8. Error results for Example 2; al = h2, 0 = 3/4, no perturbation. 

h-' Error (ACEO) Ratio Error (AE) Ratio 
4 0.601714E+00 - 0.344687E+00 - 

8 0.471825E+00 1.2750 0.155881E+00 2.2110 
16 0.264104E+00 1.7870 0.633696E-01 2.4600 
32 0.127430E+00 2.0730 0.228905E-01 2.7680 
64 0.931529E-01 1.3680 0.665477E-02 3.4400 
128 0.769460E-01 1.2110 0.173857E-02 3.8280 
256 0.481676E-01 1.5970 0.439658E-03 3.9540 
512 0.193434E-01 2.4900 0.110234E-03 3.9880 
1024 0.570037E-02 3.3930 0.275784E-04 3.9970 
2048 0.149177E-02 3.8210 0.689587E-05 3.9990 
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Final value for theta = 1/4 Final value for theta = 3/4 
2 . 2 

1.5 1.5. 

1 1 

0.5 0.5 

o 0 

-0.5. -0.5, 

-1 -1. 
0 0.5 1 0 0.5 1 

Exact solution, Example 2 

1.5- 

1 

0.5 

0 

-0.5 
0 0.5 1 

FIGURE 1. Profiles for Example 2 

Example 3. For our third example we took the piecewise linear function 

(O, O < x < I, 
- 2' 

(20) vo(x) 16x -8, 2 < X < 3 

t16 -16x, 
3 < X<, 

and evolved it forward in time, using the heat equation, to t = I 1 33 and 1 
32' 616 -32' 8 

We then considered two problems for the backward heat equation, one defined by 

taking 

1 3 3 3 
f(x)=v(x, -), t*z 0= - 4' = v( )' 8 32 4 '32' 

and the other defined by taking 

f (x) = v(x, 8'tF 3 0 = 'X=V( '32 8 32 4 '32 

Figure 2 shows the initial profile (20), the final value profile f(x), and the two 

"exact solutions". 

We note that the comparative accuracy of the two methods is the same as was 

observed for the first example. Also, since the exact solution is not nearly as smooth 

as in Example 1, we expect less accuracy in general; this is also borne out. For this 

reason we did not perturb the data with the random noise profile, as was done in 

the first example. 
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TABLE 9. Error results for Example 3; a = h2, 0 = 1/4, no perturbation. 

7h- Error (ACEO) Ratio Error (AE) Ratio 
4 0.3315377D+00 - 0.3904057D+00 - 

8 0.2380698D+00 1.39 0.3286736D+00 1.19 
16 0.1292539D+00 1.84 0.2903586D+00 1.13 
32 0.5715822D-01 2.26 0.2087561D+00 1.39 
64 0.3799415D-01 1.50 0.1031234D+00 2.02 
128 0.3087935D-01 1.23 0.4897861D-01 2.11 
256 0.1929986D-01 1.60 0.3904010D-01 1.25 
512 0.7747773D-02 2.49 0.3779288D-01 1.03 
1024 0.2282331D-02 3.39 0.3610386D-01 1.05 
2048 0.5336306D+00 0.00 0.5336307D+00 0.07 

TABLE 10. Error results for Example 3; a = h2, 0 = 3/4, no perturbation. 

h71 Error (ACEO) Ratio Error (AE) Ratio 
4 0.7187147D-01 0.00 0.4512433D-01 0.00 
8 0.2741758D-01 2.62 0.1312834D-01 3.44 
16 0.1120489D-01 2.45 0.3478319D-02 3.77 
32 0.3694868D-02 3.03 0.8850708D-03 3.93 
64 0.1021037D-02 3.62 0.2223288D-03 3.98 
128 0.2852814D-03 3.58 0.5564034D-04 4.00 
256 0.9923097D-04 2.87 0.1390128D-04 4.00 
512 0.3418836D-04 2.90 0.3463707D-05 4.01 
1024 0.9739959D-05 3.51 0.9516162D-06 3.64 
2048 0.1019063D+00 0.00 0.1019063D+00 0.00 

Profile Generator Final Value Profile 

4 4 

3 3 

2 2 

o 0 

0 0.5 1 0 0.5 1 

Exact solution, theta = 1/4 Exact solution, theta - 3/4 

4 4 

3 3 

2 2 

1 1 

o 0 

0 0.5 1 0 0.5 1 

FIGURE 2. Profiles for Example 3 
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Example 4. Our final example is a smooth two-dimensional problem. We consider 
the solution of the backward heat equation 

Ut = Uxx + uyy (x y) EQ(0, 1) x (0, 1), t < T, 
u(x, y, t) = 0, (x, y) E aQ1 

u( x, y,T = e sin 7rx sin Fry, 

which has exact solution 

u(x, y, t) =1e -22(t-T) sin rrx sin ity. 

We take T = 5/32 and t* = 1/8. Our primary concern here is with the cost in 
time of executing the algorithm described here. Our data is summarized in Table 
11. Note that the CG iteration is much more cost effective than the eigenvalue 
approximation, even though very few eigenvalues are being used. However, this is 
a little deceptive. The eigensolver used (DSBEVX from LAPACK) is a general- 
purpose eigensolver for banded matrices and requires large amounts of storage even 
if only some of the eigenvalues/vectors are being computed. An eigensolver that 
was more storage efficient would almost certainly have taken substantially less CPU 
time. 

For the eigenvalue-based approximations, we truncated the expansion when the 
terms became less than h3; for the CG-based approximations, we terminated the 
iteration when successive iterates differed by less than h3. 

TABLE 11. Timing results in CPU seconds for Example 4; a- 
h2, 0- 4/5, no perturbation. Here M = the number of eigenvalues 
used in the approximat-ion, and N the number of conjugate 
gradient iterations needed for convergence. 

h-i Eigenvalue Method CG Method 
ACEO AE ACEO AE 

Time M Time M Time N Time N 
4 0.050 8 0.050 3 0.010 2 0.020 2 
8 0.220 8 0.190 3 0.070 2 0.080 2 
16 11.940 11 11.600 4 0.140 2 0.310 2 
32 818.180 13 804.950 6 0.760 2 1.960 2 
64 _ - - - 5.360 2 13.540 2 
128 _ _ - - 39.390 2 104.690 2 

REFERENCES 

[1] Ames, K.A., and Epperson, J.F., A Kernel-based Method for the Approximate Solution of 
Backward Parabolic Problems, SIAM J. Num. Anal., Vol 34, no. 4, 1997, pp. 1357-1390. 
CMP 97:16 

[2] Brenner, S.C., and Scott, R.S., The Mathematical Theory of Finite Element Methods, 
Springer-Verlag, New York, 1994. MR 95f:65001 

[3] Bramble, J., Schatz, A., Thomee, V., and Wahlbin, L., Some convergence estimates for 
semidiscrete Galerkin approximations for parabolic equations, SIAM J. Num. Anal., 14 
(1977), pp. 218-241. MR 56:7231 

[4] Clark, G. and Oppenheimer, C., Quasireversibility Methods for Non-Well-Posed Problems, 
Elect. J. Diff. Eqns., 1994. MR 96a:34123 

[5] Golub, G., and van Loan, C., Matrix Computations, Johns Hopkins University Press, Balti- 
more, 1983. MR 85h:65063 



A COMPARISON OF REGULARIZATIONS FOR AN ILL-POSED PROBLEM 1471 

[6] Groetsch, C., The theory of Tikhonov Regularization for Fredholm Equations of the First 
Kind, Pitman, Boston, 1984. MR 85k:45020 

[7] Kelley, C.T., Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 
1995. MR 96d:65002 

[8] Lattes, R. and Lions, J.L., Methode de Quasi-Reversibility et Applications, Dunod, Paris, 
1967 (English translation R. Bellman, Elsevier, New York, 1969) MR 38:874 

[9] Miranker, W. L., A well-posed problem for the backward heat equation, Proc. Amer. Math. 
Soc., 12 (1961), pp. 243-247. MR 22:11216 

[10] Miller, K., Stabilized quasireversibility and other nearly best possible methods for non- 
well-posed problems, Symposium on Non-Well-Posed Problems and Logarithmic Convexity, 
Lecture Notes in Mathematics, Vol. 316, Springer-Verlag, Berlin, 1973, pp. 161-176. MR 
52:14710 

[11] Payne, L.E., Some general remarks on improperly posed problems for partial differential 
equations, Symposium on Non- Well-Posed Problems and Logarithmic Convexity, Lecture 
Notes in Mathematics, Vol. 316, Springer-Verlag, Berlin, 1973, pp 1-30 MR 53:13892 

[12] Shewchuk, J.R., An introduction to the conjugate gradient method without the agonizing 
pain, electronically published manuscript. 

[13] Showalter, R.E., The Final Value Problem for Evolution Equations, J. Math. Anal. Appl., 
47, 1974, pp 563-572 MR 50:5131 

[14] Showalter, R.E., Cauchy Problem for Hyper-Parabolic Partial Differential Equations, Trends 
in the Theory and Practice of Non-Linear Analysis, Elsevier, 1983 MR 87f:35121 

[15] Winther, R., Some Superlinear Convergence Results for the Conjugate Gradient Method, 
SIAM J. Num. Anal., Vol. 17, no. 1, 1980, pp. 14-17. MR 81k:65060 

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ALABAMA IN HUNTSVILLE, HUNTS- 

VILLE, ALABAMA 35899 
E-mail address: ames@math.uah.edu 

DEPARTMENT OF MATHEMATICS AND STATISTICS, MISSI`SIPPI STATE UNIVERSITY, DRAWER MA 
MSU, MS 39762 

Current address: Department of Mathematical Sciences, Virginia Commonwealth University, 
Richmond, VA 23284 

E-mail address: gwc1ark@saturn. vcu. edu 

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ALABAMA IN HUNTSVILLE, HUNTS- 

VILLE, ALABAMA 35899 
E-mail address: epperson@math .uah. edu 

DEPARTMENT OF MATHEMATICS AND STATISTICS, MISSISSIPPI STATE UNIVERSITY, DRAWER MA 
MSU, MS 39762 

E-mail address: seth@math .msstate .edu 


	Cit r85_c85: 
	Cit r87_c87: 
	Cit r93_c93: 
	Cit r99_c99: 


